359 research outputs found

    Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic Conductors

    Full text link
    The magnetic structure of antiferromagnetically ordered phases of quasi-one-dimensional organic conductors is studied theoretically at absolute zero based on the mean field approximation to the quarter-filled band with on-site and nearest-neighbor Coulomb interaction. The differences in magnetic properties between the antiferromagnetic phase of (TMTTF)2_2X and the spin density wave phase in (TMTSF)2_2X are seen to be due to a varying degrees of roles played by the on-site Coulomb interaction. The nearest-neighbor Coulomb interaction introduces charge disproportionation, which has the same spatial periodicity as the Wigner crystal, accompanied by a modified antiferromagnetic phase. This is in accordance with the results of experiments on (TMTTF)2_2Br and (TMTTF)2_2SCN. Moreover, the antiferromagnetic phase of (DI-DCNQI)2_2Ag is predicted to have a similar antiferromagnetic spin structure.Comment: 8 pages, LaTeX, 4 figures, uses jpsj.sty, to be published in J. Phys. Soc. Jpn. 66 No. 5 (1997

    Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization

    Get PDF
    The space subdivision in cells resulting from a process of random nucleation and growth is a subject of interest in many scientific fields. In this paper, we deduce the expected value and variance of these distributions while assuming that the space subdivision process is in accordance with the premises of the Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the time dependency of nucleation and growth rates. We have also developed an approximate analytical cell size probability density function. Finally, we have applied our approach to the distributions resulting from solid phase crystallization under isochronal heating conditions

    Vicious walk with a wall, noncolliding meanders, and chiral and Bogoliubov-deGennes random matrices

    Full text link
    Spatially and temporally inhomogeneous evolution of one-dimensional vicious walkers with wall restriction is studied. We show that its continuum version is equivalent with a noncolliding system of stochastic processes called Brownian meanders. Here the Brownian meander is a temporally inhomogeneous process introduced by Yor as a transform of the Bessel process that is a motion of radial coordinate of the three-dimensional Brownian motion represented in the spherical coordinates. It is proved that the spatial distribution of vicious walkers with a wall at the origin can be described by the eigenvalue-statistics of Gaussian ensembles of Bogoliubov-deGennes Hamiltonians of the mean-field theory of superconductivity, which have the particle-hole symmetry. We report that the time evolution of the present stochastic process is fully characterized by the change of symmetry classes from the type CC to the type CCI in the nonstandard classes of random matrix theory of Altland and Zirnbauer. The relation between the non-colliding systems of the generalized meanders of Yor, which are associated with the even-dimensional Bessel processes, and the chiral random matrix theory is also clarified.Comment: REVTeX4, 16 pages, 4 figures. v2: some additions and correction

    Integrated phased-array 1×16 photonic switch for WDM optical packet switching application

    Get PDF
    Integrated InP/InGaAsP phased-array 1×16 optical switch is fabricated and characterized for broadband WDM optical packet switching. Wavelength-insensitive operation covering the C-band and penalty-free transmission of 40-Gbps signal are demonstrated

    Coexistent State of Charge Density Wave and Spin Density Wave in One-Dimensional Quarter Filled Band Systems under Magnetic Fields

    Full text link
    We theoretically study how the coexistent state of the charge density wave and the spin density wave in the one-dimensional quarter filled band is enhanced by magnetic fields. We found that when the correlation between electrons is strong the spin density wave state is suppressed under high magnetic fields, whereas the charge density wave state still remains. This will be observed in experiments such as the X-ray measurement.Comment: 7 pages, 15 figure

    Functional central limit theorems for vicious walkers

    Full text link
    We consider the diffusion scaling limit of the vicious walker model that is a system of nonintersecting random walks. We prove a functional central limit theorem for the model and derive two types of nonintersecting Brownian motions, in which the nonintersecting condition is imposed in a finite time interval (0,T](0,T] for the first type and in an infinite time interval (0,)(0,\infty) for the second type, respectively. The limit process of the first type is a temporally inhomogeneous diffusion, and that of the second type is a temporally homogeneous diffusion that is identified with a Dyson's model of Brownian motions studied in the random matrix theory. We show that these two types of processes are related to each other by a multi-dimensional generalization of Imhof's relation, whose original form relates the Brownian meander and the three-dimensional Bessel process. We also study the vicious walkers with wall restriction and prove a functional central limit theorem in the diffusion scaling limit.Comment: AMS-LaTeX, 20 pages, 2 figures, v6: minor corrections made for publicatio

    Infinite systems of non-colliding generalized meanders and Riemann-Liouville differintegrals

    Full text link
    Yor's generalized meander is a temporally inhomogeneous modification of the 2(ν+1)2(\nu+1)-dimensional Bessel process with ν>1\nu > -1, in which the inhomogeneity is indexed by κ[0,2(ν+1))\kappa \in [0, 2(\nu+1)). We introduce the non-colliding particle systems of the generalized meanders and prove that they are the Pfaffian processes, in the sense that any multitime correlation function is given by a Pfaffian. In the infinite particle limit, we show that the elements of matrix kernels of the obtained infinite Pfaffian processes are generally expressed by the Riemann-Liouville differintegrals of functions comprising the Bessel functions JνJ_{\nu} used in the fractional calculus, where orders of differintegration are determined by νκ\nu-\kappa. As special cases of the two parameters (ν,κ)(\nu, \kappa), the present infinite systems include the quaternion determinantal processes studied by Forrester, Nagao and Honner and by Nagao, which exhibit the temporal transitions between the universality classes of random matrix theory.Comment: LaTeX, 35 pages, v3: The argument given in Section 3.2 was simplified. Minor corrections were mad

    Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems

    Full text link
    As an extension of the theory of Dyson's Brownian motion models for the standard Gaussian random-matrix ensembles, we report a systematic study of hermitian matrix-valued processes and their eigenvalue processes associated with the chiral and nonstandard random-matrix ensembles. In addition to the noncolliding Brownian motions, we introduce a one-parameter family of temporally homogeneous noncolliding systems of the Bessel processes and a two-parameter family of temporally inhomogeneous noncolliding systems of Yor's generalized meanders and show that all of the ten classes of eigenvalue statistics in the Altland-Zirnbauer classification are realized as particle distributions in the special cases of these diffusion particle systems. As a corollary of each equivalence in distribution of a temporally inhomogeneous eigenvalue process and a noncolliding diffusion process, a stochastic-calculus proof of a version of the Harish-Chandra (Itzykson-Zuber) formula of integral over unitary group is established.Comment: LaTeX, 27 pages, 4 figures, v3: Minor corrections made for publication in J. Math. Phy

    Scaling limit of vicious walks and two-matrix model

    Full text link
    We consider the diffusion scaling limit of the one-dimensional vicious walker model of Fisher and derive a system of nonintersecting Brownian motions. The spatial distribution of NN particles is studied and it is described by use of the probability density function of eigenvalues of N×NN \times N Gaussian random matrices. The particle distribution depends on the ratio of the observation time tt and the time interval TT in which the nonintersecting condition is imposed. As t/Tt/T is going on from 0 to 1, there occurs a transition of distribution, which is identified with the transition observed in the two-matrix model of Pandey and Mehta. Despite of the absence of matrix structure in the original vicious walker model, in the diffusion scaling limit, accumulation of contact repulsive interactions realizes the correlated distribution of eigenvalues in the multimatrix model as the particle distribution.Comment: REVTeX4, 12 pages, no figure, minor corrections made for publicatio
    corecore